PHYS 704 Final Exam

- 1. [10 points]

Find the electric and magnetic fields appropriate for radiation from

$$
\Phi(\vec{x}, t)=\frac{1}{4 \pi \epsilon_{0} r}\left\{Q\left(t_{0}\right)+\frac{\hat{r} \cdot \dot{\vec{p}}\left(t_{0}\right)}{c}+\frac{\hat{r} \cdot \vec{p}\left(t_{0}\right)}{r}\right\}
$$

and

$$
\vec{A}(\vec{x}, t)=\frac{\mu_{0}}{4 \pi r} \dot{\vec{p}}\left(t_{0}\right)
$$

by working out explicitly any derivatives you might encounter.

- 2. [10 points]

Three charges are located along the z axis, a charge $+2 q$ at the origin, and charges $-q$ at $z= \pm a \cos (\omega t)$. Determine the lowest non-vanishing multipole moments, the angular distribution of radiation, and the total power radiated. Assume that $k a \ll 1$.

- 3. [10 points]
(a) Derive the parallel-velocity addition law for two successive Lorentz transformations in the same direction.
(b) Derive a formula for the Doppler effect when the velocity of the source in the observer rest frame makes an angle θ with the photon direction.
- 4. [10 points]

Consider a charged particle of charge ze traveling along the x axis with speed v.
(a) By calculating the electromagnetic energy flow through a cylinder of radius a around the path of the moving charge show that the energy lost at impact parameters b greater than a minimum value a is given by

$$
\left(\frac{d E}{d x}\right)_{b>a}=-c a \Re \int_{0}^{\infty} d \omega B_{3}^{*}(\omega) E_{1}(\omega)
$$

(b) The fields for $|\lambda a| \gg 1$ are given by

$$
\begin{aligned}
E_{1}(\omega, b) & \rightarrow i \frac{z e \omega}{c^{2}}\left[1-\frac{1}{\beta^{2} \epsilon(\omega)}\right] \frac{e^{-\lambda b}}{\sqrt{\lambda b}} \\
E_{2}(\omega, b) & \rightarrow \frac{z e}{v \epsilon(\omega)} \sqrt{\frac{\lambda}{b}} e^{-\lambda b} \\
B_{3}(\omega, b) & \rightarrow \beta \epsilon(\omega) E_{2}(\omega, b)
\end{aligned}
$$

Under what conditions does Cherenkov radiation result? Define the Cherenkov angle θ_{C} and determine an expression for $\cos \left(\theta_{C}\right)$. How does the number of emitted photons depend on θ_{C} and on the frequency?

- 5. [10 points]

The Larmor formula for the power radiated by an accelerating charge at non-relativistic (NR) velocities is

$$
\begin{equation*}
P=\frac{2}{3} \frac{q^{2}}{c^{3}} a^{2} \tag{1}
\end{equation*}
$$

where the magnitude of the charge is q and the acceleration is a.
(a) Write down a Lorentz-invariant expression which may be the proper relativistic generalization of the Larmor formula: it should reduce to the above in the NR limit and not contain anything higher than first-order in velocity derivatives. [Hint: the simplest generalization works.]
(b) Show that your expression can be written as

$$
\begin{equation*}
P=\frac{2}{3} \frac{q^{2}}{c} \gamma^{6}\left[(\dot{\vec{\beta}})^{2}-(\vec{\beta} \times \dot{\vec{\beta}})^{2}\right] \tag{2}
\end{equation*}
$$

where dots represent differentiation with respect to time t, not with respect to τ.
(c) Consider 100 GeV electrons in a linear accelerator or in a circular accelerator. Recognize that the maximum acceleration gradient that can be provided is roughly $50 \mathrm{MeV} / \mathrm{m}$. Use the above expression to find the radiative power loss per meter in both cases and comment on which may be higher.

