PHYS 704-Final Exam

Note: If you do not recall important formulas (and you should) just ask!

- 1. [10 points]
(a) Starting from the Maxwell equations, obtain the wave equation for an electromagnetic wave in a uniform medium and then the Helmholtz equation for a monochromatic electromagnetic wave in such a medium.
(b) How is this equation modified in the presence of an Ohmic conductor of conductivity σ.
(c) A plane-polarized electromagnetic wave of frequency ω in free space is incident normally on the flat surface of a nonpermeable medium of conductivity σ and dielectric constant ϵ. Calculate the amplitude and phase of the reflected wave relative to the incident wave for arbitrary σ and ϵ.
- 2. [10 points]
(a) Consider a single point charge q rotating in a circle of radius R at a fixed nonrelativistic speed v. What is the total radiated power?
(b) Consider a dipole consisting of two charges $\pm q$ at the two ends of an insulating rod of length $2 R$ which rotates around its center at fixed angular speed such that the charges are moving at a non-relativistic speed v. Decompose this situation into oscillating dipoles and determine the angular distribution and total radiated power. Compare this result to the result of part (a).
- 3. [10 points]
(a) A covariant formulation of gauge freedom is that the 4 -gradient of any scalar function (say χ) of spacetime can be added to the 4 -vector potential. Show that the electromagnetic field tensor is unaffected by such a change.
(b) Obtain a relativstically correct "Lorentz force law" for $d \vec{p} / d t$ from the covariant equation

$$
\begin{equation*}
\frac{d p^{\mu}}{d \tau}=\frac{q}{m} F^{\mu \nu} p_{\nu} \tag{1}
\end{equation*}
$$

and use it to find the radius R of the circle in which a particle of charge q and momentum $p \equiv|\vec{p}|=m \gamma v$ gyrates in a uniform magnetic field \vec{B} perpendicular to its motion. There is no electric field.

- 4. [10 points]

The covariant Lagrangian for a charged particle in an electromagnetic field can be written as

$$
\begin{equation*}
L=-m \sqrt{U_{\mu} U^{\mu}}-J_{\mu} A^{\mu}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \tag{2}
\end{equation*}
$$

Use the Euler-Lagrange equations to deduce the free particle equation of motion as well as two of the Maxwell equations. Where are the other two equations in the covariant formulation? [Note that you may ignore non-essential numeric factors and factors of c.]

- 5. [10 points]

A heavy charged particle (such as a proton) traverses matter. Obtain an expression for the average energy lost per unit distance, i.e., for $d E / d x$. Your result should exhibit at least an initial fall with energy followed by a relativistic rise.

