PHYS 704-Final Exam

Note: If you do not recall important formulas (and you should) just ask!

- 1. [10 points]

A circular wire loop of radius b lies in the $x-y$ plane with center at the origin. It carries an alternating current $I(t)=I_{0} \cos (\omega t)$. Find (a) the electric and magnetic fields at distant points, (b) the differential and total power radiated, and (c) the radiation resistance of this configuration.

- 2. [10 points]

A perfectly conducting flat screen occupies half of the $x-y$ plane (i.e., $x<0$). A plane wave of intensity I_{0} and wave number k is incident along the z axis from the region $z<0$. Consider the diffracted fields in the plane parallel to the $x-y$ plane defined by $z=Z>0$. Let the coordinates of the observation point be $(X, 0, Z)$. In the usual scalar Kirchoff approximation and in the limit $Z \gg X$ and $\sqrt{k Z} \gg 1$ find the diffracted field $\psi(X, 0, Z, t)$ in terms of $\xi=(k / 2 Z)^{1 / 2} X$. An integral is fine.

- 3. [10 points]
(a) A wire is uncharged in the O-frame and carries a current $I=10 \mathrm{Amps}$ which results from a line of positive charges moving to the right (along the x-axis) with speed $v=0.8 c$ and a line of negative charges at rest. What is the net electric charge density of the wire (in C / m) in the O '-frame which is moving along the x-axis with velocity $v=0.8 c$. What is the current (in Amps) carried by the wire in the O'-frame?
(b) The rapidity η of a particle can be defined as $\tanh ^{-1} \beta$. Show that an interval in rapidity is invariant under longitudinal Lorentz boosts.
- 4. The BMT equation for the time dependence of the spin of a charged particle is

$$
\frac{d S^{\alpha}}{d \tau}=\frac{e}{m c}\left[\frac{g}{2} F^{\alpha \beta} S_{\beta}+\frac{1}{c^{2}}\left(\frac{g-2}{2}\right) v^{\alpha}\left(S_{\lambda} F^{\lambda \mu} v_{\mu}\right)\right]
$$

(a) What is the corresponding equation for the 4 -momentum?
(b) How does the spin of a muon with $g=2$ precess around its momentum?
(c) Explain qualitatively what is different when g is slightly larger than 2 (the real case).
(d) Find an expression for the time-component of the spin 4 -vector in terms of the spin and velocity 3 -vectors.

- 5. [10 points]
(a) Find an approximate expression for the maximum energy transferred to an electron at rest by a charged particle that moves past the electron at a relativistic speed. What does this expression give for a LHC proton of energy 3.5 TeV ?
(b) Use the above expression to find, at least approximately, the energy loss per unit distance by a charged particle traversing a medium. Give reasons for the limits of any integral you may evaluate.

