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Diffraction gratings are used in many fields in physics, especially astronomy.

There are many equations that govern the physics of these gratings, including the

resolving power equation. The resolving power is utilized to through dispersion

to give the require resolution for spectral analysis of light sources.

1 INTRODUCTION

Diffraction gratings are used in many fields in physics, especially astronomy. In astronomy,

diffraction gratings are used in spectrographs to analyze the light of astronomical objects that

is gathered by telescopes. These gratings use the principles of constructive and destructive

interference of light to spread the different wavelengths out based on the wave nature of light

and the diffraction grating equation, Eq. 1, where d is the grating spacing, θ is the angle of the

incoming light, n is diffraction order, and λ is the wavelength of light.

d sinθ = nλ (1)

The path length of light is related to wavelength of light and the structure of grating. This

allows for the analysis of the elemental makeup of the objects in question based on the result-

ing spectra. The special resolution of the resulting spectra is determined by there resolving

power equation.

1.1 TYPES OF DIFFRACTION GRATINGS

There are two different types of diffraction gratings that both utilize the properties of elec-

tromagnetic wave interfaces at a dielectric medium. These are reflection (Fig. 1a) and trans-

mission gratings (Fig. 1b).
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Figure 1: Two Types of Diffraction Grating with θ =α+β: (a) Reflection Gratings (b) Transmis-

sion Grating[1]

2 THE RESOLVING POWER EQUATION

The resolving power is a dimensionless quantity of the average wavelengthλ divided by the

limit of resolution, or the difference in wavelength between two lines of equal intensity that

can be distinguished, dλ.

The resolving power R , is dependent on the diffraction order n, and the total number of

grooves that are illuminated on the surface of the grating by the light source N as shown in

Eq. 2 [3].

R =
λ

dλ
= nN (2)

2.1 DERIVATION

The fourier coefficients that correspond to the amplitude of the nth order of the grating,

where g (x) is the grating transmittance (or reflectance), is given by Eq. 3[2], when an infinitely

extend diffraction grating is assumed.

Gn =
1

d

∫+
d
2

− d
2

g (x)e i n 2πx
d d x (3)

2



When the change of variables, θ = n2πx/d , is applied, and the integral evaluated, the result is

Eq. 4[2].

Gn =
1

2nπ

∫na2π

0
e iθ dθ =

1

2nπ
(1−e i na2π) (4)

The magnitude of Eq. 4[2] is squared, is the intensity of the diffractions, as shown in Eq. 5[2].

In = |Gn |
2
=

sin2(nπθ)

n2π2
(5)

The intensity, as shown in Eq. 5[2], peaks at a phase difference between two interacting

wavelets of [3]:

δ= 2nπ (6)

This phase difference is also equal to [3]:

δ=
2π

λ
d sinθ (7)

The peak phase difference is given by Eq. 8 [3].

dδ=
2π

N
(8)

The grating equation, Eq. 1, when differentiated gives Eq. 9 [3].

d cosθdθ = n dλ (9)

This equation is then substituted into Eq. 10, which is the differentiated form of Eq. 7 [3].

dδ=
2π

λ
d cosθdθ (10)

That equation is then set equal to Eq. 8 to give Eq. 11 [3].

2π

N
=

2π

λ
n dλ (11)

When Eq. 12 is inverted, Eq. 2, the resolving power equation, is recovered [3].

1

Nn
=

dλ

λ
(12)

3 SIGNIFICANCE OF THE RESOLVING POWER EQUATION

As discussed above the resolving power is directly dependent on the diffraction order of

interest and the number of groves illuminated by the source. The resolving power gives an

expression of if two spectral lines with be resolved. This distance between the two lines is a

minimum when the peak of one line is at the minimum of the second line. If two lines are

father apart then this minimum resolved distance then they will be resolved. This can be

equated to an angular dispersion through the total aperture of the grating.
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3.1 ANGULAR DISPERSION

This angular dispersion is characterized by the dispersive power equation shown in Eq. 13.

The resolving power is equal to the total aperture of the grating times this dispersive power[4].

dθ

dλ
=

n

(d)cos(θ)
(13)

This shows that the dispersion of the light is based on the wavelength λ, the order of diffrac-

tion n, and the grating spacing d . In addition that means that the resolving power is depen-

dent on the wavelength, which is also shown in the resolving power equation itself.

3.2 SPECTRAL ANALYSIS

The resolving power of diffraction gratings are important in spectral analysis. This disper-

sion based on order and wavelength is important to spectral analysis because it shows that at

higher order light will be spread out farther giving higher spectral resolution. In astronomy

and other fields, this higher spectral resolution is utilized to give the resolution to examine

the spectral structure. This analysis allows for compositional analysis of the object that is

producing the light through absorption and emission. The higher resolution allows for deter-

mination of fine and hyper fine structure and the chemical make up.
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