PHYS 703 - More Magnetic fields.

1.

(i) Show, keeping explicit track of indices, that

$$
\left.\int d^{3} x^{\prime} \vec{x}^{\prime}\left(\vec{J}\left(\vec{x}^{\prime}\right) \cdot \vec{B}(\vec{x})\right)\right|_{\vec{x}=0}=\left.\left\{\vec{B}(\vec{x}) \times \int d^{3} x^{\prime} \overrightarrow{\mathcal{M}}\left(\vec{x}^{\prime}\right)\right\}\right|_{\vec{x}=0}
$$

(ii) Show that the equation for a magnetic field line due to a magnetic dipole at the origin and oriented along the z-axis is $r=r_{0} \sin ^{2} \theta$.
(iii) Obtain Jackson's equation 5.73.

